

Range Types
In Your Application

Jeff Davis
pgsql@j-davis.com

Goals

● Improved application functionality
● Better Performance
● Easier to use and less error-prone

Quick Introduction

● A Range Type represents a range of an
ordinary type

● NUMRANGE: range of NUMERICs
● DATERANGE: range of DATEs
● TSTZRANGE: range of TIMESTAMPTZs

What is a Range?

● “1pm until 4pm today” is a range
● “3.1 – 7.7” is a range
● “192.168.1.10 through .20” is a range
● Can be discrete

– INTRANGE, DATERANGE

● Or continuous
– TSTZRANGE, NUMRANGE

Functions/Operators

● Contains “@>”
● Overlaps “&&”
● Intersection “*”
● Union “+”
● Many more...

Example

SELECT contains(
 range(1.7, 90.1),
 3.3 -- scalar
);
-- returns TRUE

SELECT overlaps(
 '[-2, -1]'::numrange,
 range(6.2) -- singleton range
);
-- returns FALSE

Inclusive/Exclusive Bounds

● Does '[1.1, 2.2)' include the point 2.2?
● “[“ and “]” mean “inclusive”
● And “(“ and “)” mean “exclusive”
● Answer: No.
● Range(1.1, 2.2) constructor function uses

inclusive-exclusive form
– Other constructors exist

Scheduling Example - Schema

CREATE TABLE reservation
(
 user_id TEXT,
 room_id INT,
 during DATERANGE
);

Scheduling Example - Code

import psycopg2
conn = psycopg2.connect(
 'host=/tmp dbname=postgres user=jdavis')
cur = conn.cursor()
cur.execute('''
 INSERT INTO reservation
 VALUES(%s, %s, %s)
 ''',
 ('bill', 456, '[20130407, 20130410)'))

...

Scheduling Example - Code

cur.execute('''
 SELECT
 user_id, room_id,
 lower(during),upper(during)
 FROM reservation
 ''')

print(cur.fetchone())

Problem: Overlapping
Reservations

● What if two people try to reserve the same
room for overlapping dates?

● If the range was identical, we could use
UNIQUE

● But for overlapping, we need something
better.

● Ideas?

Solution: Overlapping
Reservations

CREATE EXTENSION btree_gist;

ALTER TABLE reservation ADD
 EXCLUDE USING gist
 (room_id WITH =,
 during WITH &&);

Solution Continued

● Should also prevent users from reserving
different rooms for overlapping dates

– Can't be in two places at once

● Solution is similar

Queries - DEMO

● Which rooms are occupied on April 10th,
2013?

● Which users are present at the same time
as Bill?

● How many total room-days are reserved?

Compare to non-range queries

DEMO

Conclusion

● Don't constrain yourself to representing
individual points only

– Especially not when it comes to time!

● Simplify queries and schema
● Solve the “non-overlapping” problem

– Especially for scheduling!

● Benefit from range indexing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

